20% Discount with Use Code SAVEON20
  • Cart
  • Contact us
  • FAQ
logo01 univebook
Login / Register
Wishlist
0 Compare
12 items $138.01
Menu
logo01 univebook
12 items $138.01
  • Home
  • Shop
  • My account
  • Blog
  • About us
  • Contact us
  • Request an eBook
“The Arithmetic of Elliptic Curves 2nd Edition by Joseph H. Silverman, ISBN-13: 978-0387094939” has been added to your cart. View cart
-70%
Spectral Theory
Click to enlarge
Home Mathematics Spectral Theory: Basic Concepts and Applications by David Borthwick, ISBN-13: 978-3030380014
Statistical Models
Statistical Models: Theory and Practice 2nd Edition by David A. Freedman, ISBN-13: 978-0521743853 $50.00 Original price was: $50.00.$14.99Current price is: $14.99.
Back to products
Single Variable Calculus
Single Variable Calculus: A First Step 1st Edition, ISBN-13: 978-3110524628 $50.00 Original price was: $50.00.$14.99Current price is: $14.99.

Spectral Theory: Basic Concepts and Applications by David Borthwick, ISBN-13: 978-3030380014

$50.00 Original price was: $50.00.$14.99Current price is: $14.99.

Compare
Add to wishlist
SKU: spectral-theory-basic-concepts-and-applications-by-david-borthwick-isbn-13-978-3030380014 Category: Mathematics Tags: David Borthwick, ISBN-10: 3030380017, ISBN-13: 978-3030380014, Spectral Theory Basic Concepts and Applications by David Borthwick
Share:
  • Description
  • Reviews (0)
  • Shipping & Delivery
Description

Spectral Theory: Basic Concepts and Applications by David Borthwick, ISBN-13: 978-3030380014

[PDF eBook eTextbook]

  • Publisher: ‎ Springer; 1st ed. 2020 edition (March 13, 2020)
  • Language: ‎ English
  • 348 pages
  • ISBN-10: ‎ 3030380017
  • ISBN-13: ‎ 978-3030380014

This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature.

Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schrödinger operators, operators on graphs, and the spectral theory of Riemannian manifolds.

Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.

Table of Contents:

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Bounded Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Unbounded Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Closed Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Symmetry and Self-adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 Spectrum and Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Spectrum of Self-adjoint Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Spectral Theory of Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5 The Spectral Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Spectral Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6 The Laplacian with Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1 Self-adjoint Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Discreteness of Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Regularity of Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4 Eigenvalue Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5 Asymptotics of Dirichlet Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.6 Nodal Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.7 Isoperimetric Inequalities and Minimal Eigenvalues . . . . . . . . . . . . . . . . . 174
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7 Schrödinger Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.1 Positive Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2 Relatively Bounded Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.3 Relatively Compact Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.4 Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.5 Semiclassical Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.6 Periodic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8 Operators on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.1 Combinatorial Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.2 Quantum Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.3 Spectral Properties of Compact Quantum Graphs . . . . . . . . . . . . . . . . . . . . 232
8.4 Eigenvalue Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.5 Eigenvalue Asymptotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9 Spectral Theory on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.1 Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.2 Riemannian Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.3 The Laplacian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.4 Spectrum of a Compact Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.5 Heat Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.6 Wave Propagation on Compact Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.7 Complete Manifolds and Essential Self-adjointness . . . . . . . . . . . . . . . . . . 287
9.8 Essential Spectrum of Complete Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
A.1 Measure and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
A.2 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
A.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
A.4 Elliptic Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

David Borthwick is Professor and Director of Graduate Studies in the Department of Mathematics at Emory University, Georgia, USA. His research interests are in spectral theory, global and geometric analysis, and mathematical physics. His monograph  Spectral Theory of Infinite-Area Hyperbolic Surfaces appears in Birkhäuser’s Progress in Mathematics, and his Introduction to Partial Differential Equations is published in Universitext.

What makes us different?

• Instant Download

• Always Competitive Pricing

• 100% Privacy

• FREE Sample Available

• 24-7 LIVE Customer Support

Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “Spectral Theory: Basic Concepts and Applications by David Borthwick, ISBN-13: 978-3030380014” Cancel reply

You must be logged in to post a review.

Shipping & Delivery

You will receive the link of your eBook 30 seconds after purchase on your email (check you email or junk mail), and you can login to your account at anytime using your username to read or download your eBook.

If you have any problem or any other questions, you can email us or try the chat widget.

Visit contact us.

Related products

-71%
Visual Differential Geometry and Forms
Compare

Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts by Tristan Needham, ISBN-13: 978-0691203706

Mathematics
$50.00 Original price was: $50.00.$14.33Current price is: $14.33.
Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts by Tristan Needham, ISBN-13: 978-0691203706 [PDF eBook eTextbook] Publisher:
Add to wishlist
Add to cart
Quick view
-72%
Strength in Numbers
Compare

Strength in Numbers: The Rising of Academic Statistics Departments in the U. S., ISBN-13: 978-1461436485

Mathematics
$50.00 Original price was: $50.00.$14.25Current price is: $14.25.
Strength in Numbers: The Rising of Academic Statistics Departments in the U. S., ISBN-13: 978-1461436485 [PDF eBook eTextbook] Publisher: Springer;
Add to wishlist
Add to cart
Quick view
-70%
Real Analysis 4th Edition by Halsey Royden
Compare

Real Analysis 4th Edition by Halsey Royden, ISBN-13: 978-0131437470

Mathematics
$50.00 Original price was: $50.00.$14.97Current price is: $14.97.
Real Analysis 4th Edition by Halsey Royden, ISBN-13: 978-0131437470 [PDF eBook eTextbook] Publisher: ‎ Pearson; 4th edition (January 15, 2010)
Add to wishlist
Add to cart
Quick view
-62%
Statistics
Compare

Statistics: Learning from Data 2nd Edition by Roxy Peck, ISBN-13: 978-1337558082

Mathematics
$50.00 Original price was: $50.00.$19.24Current price is: $19.24.
Statistics: Learning from Data 2nd Edition by Roxy Peck, ISBN-13: 978-1337558082 [PDF eBook eTextbook]   Publisher: Cengage Learning; 2nd edition
Add to wishlist
Add to cart
Quick view
-70%
The Mathematical Theory of Communication by Claude E Shannon
Compare

The Mathematical Theory of Communication by Claude E Shannon, ISBN-13: 978-1843761846

Mathematics
$50.00 Original price was: $50.00.$14.99Current price is: $14.99.
The Mathematical Theory of Communication by Claude E Shannon, ISBN-13: 978-1843761846 [PDF eBook eTextbook] Publisher: ‎ The University of Illinois
Add to wishlist
Add to cart
Quick view
-80%
The Black Swan
Compare

The Black Swan: The Impact of the Highly Improbable, ISBN-13: 978-1400063512

Mathematics
$50.00 Original price was: $50.00.$9.99Current price is: $9.99.
The Black Swan: The Impact of the Highly Improbable, ISBN-13: 978-1400063512 [PDF eBook eTextbook] Publisher: Random House; Annotated edition (April
Add to wishlist
Add to cart
Quick view
-71%
Simulation and the Monte Carlo Method 3rd Edition by Reuven Y. Rubinstein
Compare

Simulation and the Monte Carlo Method 3rd Edition by Reuven Y. Rubinstein, ISBN-13: 978-1118632161

Mathematics
$75.00 Original price was: $75.00.$21.99Current price is: $21.99.
Simulation and the Monte Carlo Method 3rd Edition by Reuven Y. Rubinstein, ISBN-13: 978-1118632161 [PDF eBook eTextbook] Publisher: ‎ Wiley;
Add to wishlist
Add to cart
Quick view
-71%
The Complexity of Boolean Functions by Ingo Wegener
Compare

The Complexity of Boolean Functions by Ingo Wegener, ISBN-13: 978-0471915553

Mathematics
$50.00 Original price was: $50.00.$14.45Current price is: $14.45.
The Complexity of Boolean Functions by Ingo Wegener, ISBN-13: 978-0471915553 [PDF eBook eTextbook] Publisher: ‎ Wiley; 1st edition (January 8,
Add to wishlist
Add to cart
Quick view

Free Shipping.

Via Email.

24/7 Support.

Contact Or Chat With Us.

Online Payment.

One Time Payement.

Fast Delivery.

30 Seconds After Purchase.

  • OUR COMPANY
    • UniveBook
    • Email: contact@univebook.com
    • Website: univebook.com
  • USEFUL LINKS
    • Home
    • Shop
    • Wishlist
    • Blog
  • OUR POLICY
    • Privacy Policy
    • Refund Policy
    • Terms & Conditions
    • DMCA
  • INFORMATIONS
    • About Us
    • FAQ
    • Contact Us
    • Request an eBook

Payment System:

UNIVEBOOK 2020-2025 CREATED BY UniveBook . PREMIUM E-COMMERCE SOLUTIONS.
  • Home
  • Shop
  • Blog
  • About us
  • Contact us
  • Request an eBook
  • Wishlist
  • Compare
  • Login / Register
Shopping cart
Close
Sign in
Close

Lost your password?

No account yet?

Create an Account
Shop
Wishlist
12 items Cart
My account